

Sustainable food systems — the place for a balanced diet in mitigating greenhouse gases

John Roche,

Chief Science Adviser, &

Director, On-Farm support

Ministry for Primary Industries

Kaitohutohu Mātanga Pūtaiao Matua, me Te Pou Whakahaere, Mahi Ahuwhehua

Manatū Ahu Matua

Sustainable food systems

achieving food and nutrition security today contributes to food and nutrition security for future generations

- FAO

Sustainable food systems

achieving food and nutrition security today contributes to food and nutrition security for future generations

- FAO

- · Other articles in this volume
- Top cited articles
- Top downloaded articles
- · Our comprehensive search

Climate Change and Food Systems

Sonja J. Vermeulen,^{1,2} Bruce M. Campbell,^{2,3} and John S.I. Ingram^{4,5}

¹Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1958, Denmark

²Consortium of International Agricultural Research Centers Research Program on Change, Agriculture and Food Security, Frederiksberg C, DK-1958, Denmark; email: s.vermeulen@cgiar.org, b.campbell@cgiar.org

³International Center for Tropical Agriculture (CIAT), Cali, Colombia

⁴Environmental Change Institute, University of Oxford, Oxford OX1 3QY, United Kingdom; email: john.ingram@eci.ox.ac.uk

⁵Natural Environment Research Council, Swindon SN2 1EU, United Kingdom

Annu. Rev. Environ. Resour. 2012.37:195-222. Downloaded from www.annualreviews.org Access provided by 165.225.59.82 on 02/25/23. For personal use only.

Table 1 Estimates of the relative contributions of different stages of the food chain to global greenhouse gas emissions

Stage of food chain ^a		Emissions (MtCO ₂ e) ^b	
Preproduction	Fertilizer manufacture	282-575	
	Energy use in animal feed production	60	
	Pesticide production	3-140	
Production	Direct emissions from agriculture	5,120-6,116	
	Indirect emissions from agriculture	2,198–6,567	
Postproduction ^c	Primary and secondary processing	192	
	Storage, packaging, and transport	396	
	Refrigeration	490	
	Retail activities	224	
	Catering and domestic food management	160	
	Waste disposal	72	

- · Other articles in this volume
- Top cited articles
- Top downloaded articles
- · Our comprehensive search

Climate Change and Food Systems

Sonja J. Vermeulen,^{1,2} Bruce M. Campbell,^{2,3} and John S.I. Ingram^{4,5}

¹Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, DK-1958, Denmark

²Consortium of International Agricultural Research Centers Research Program on Change, Agriculture and Food Security, Frederiksberg C, DK-1958, Denmark; email: s.vermeulen@cgiar.org, b.campbell@cgiar.org

³International Center for Tropical Agriculture (CIAT), Cali, Colombia

⁴Environmental Change Institute, University of Oxford, Oxford OX1 3QY, United Kingdom; email: john.ingram@eci.ox.ac.uk

⁵Natural Environment Research Council, Swindon SN2 1EU, United Kingdom

Annu. Rev. Environ. Resour. 2012.37:195-222. Downloaded from www.annualreviews.org Access provided by 165.225.59.82 on 02/25/23. For personal use only.

Table 1 Estimates of the relative contributions of different stages of the food chain to global greenhouse gas emissions

Stage of food chain ^a		Emissions (MtCO ₂ e) ^b	
Preproduction	Fertilizer manufacture	282-575	
~1-1.5%	Energy use in animal feed production	60	
	Pesticide production	3-140	
Production	Direct emissions from agriculture	5,120-6,116	
15-25%	Indirect emissions from agriculture	2,198–6,567	
Postproduction ^c ~3%	Primary and secondary processing	192	
	Storage, packaging, and transport	396	
	Refrigeration	490	
	Retail activities	224	
	Catering and domestic food management	160	
	Waste disposal	72	

Emissions

- Other articles in this volume
- Top cited articles
- Top downloaded articles

Table 1 Estimates of the relative contributions of different stages of the food chain to global greenhouse gas emissions

Our comprehensive search		Stage of food chain ^a	(MtCO ₂ e) ^b
and Forest emission of sonja J. Verrand John S. J.	Ily, system is responsible factors; culture sector accounts emissions;	for 20-30% of anthropogenic GHG for about 15-25% of anthropogenic	282–575 60 3–140 120–6,116 198–6,567
• IPCC estimates that 50% of total agricultural emissions are non- The partment of Plant Frederiksberg C, DK.			192 396 490
email: s.vermeulen@cgiar.org, b.campl	7, Frederiksberg C, DK-1958, Denmark; bell@cgiar.org	Retail activities	224
³ International Center for Tropical Agriculture (CIAT), Cali, Colombia ⁴ Environmental Change Institute, University of Oxford, Oxford OX1 3QY, United Kingdom; email: john.ingram@eci.ox.ac.uk ⁵ Natural Environment Research Council, Swindon SN2 1EU, United Kingdom		Catering and domestic food management	160
		Waste disposal	72

Corporate Pledges to meet warming neutrality

20% emissions reduction by 2025, 50% by 2030, and Net Zero emissions by 2040 [at the latest]

net-zero greenhouse gas emissions by 2040

reduce absolute methane emissions from its fresh milk supply chain by 30% by 2030

reduce supply chain emissions by 30% by 2030

emissions reduction of 50% by 2030 across all Scope 1, 2 & 3

net zero greenhouse gas ("GHG") emissions across its operational footprint (Scope 1 and Scope 2) and entire global supply chain (Scope 3) by 2050

The Guardian

Damian Carrington Environment editor

梦@dpcarringtonThu 31 May 2018 19.00 BST

Avoiding meat and dairy is 'single biggest way' to reduce your impact on Earth

Biggest analysis to date reveals huge footprint of livestock - it provides just 18% of calories but takes up 83% of farmland

The Guardian

Damian Carrington *Environment editor*

梦@dpcarringtonThu 31 May 2018 19.00 BST

Avoiding meat and dairy is 'single biggest way' to reduce your impact on Earth

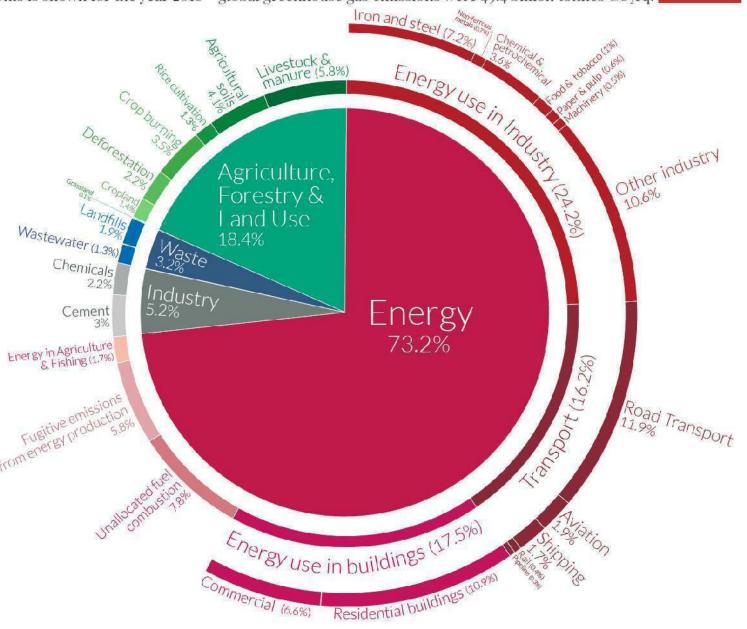
Biggest analysis to date reveals huge footprint of livestock - it provides just 18% of calories but takes up 83% of farmland

- •Without meat and dairy consumption, global farmland use could be reduced by more than 75% an area equivalent to the U.S., China, the European Union and Australia combined and still feed the world.
- •"A vegan diet is probably the single biggest way to reduce your impact on planet Earth"

%

73.2 Energy

 Agriculture 18.4


 Industry 5.2

 Waste 3.2

Global greenhouse gas emissions by sector

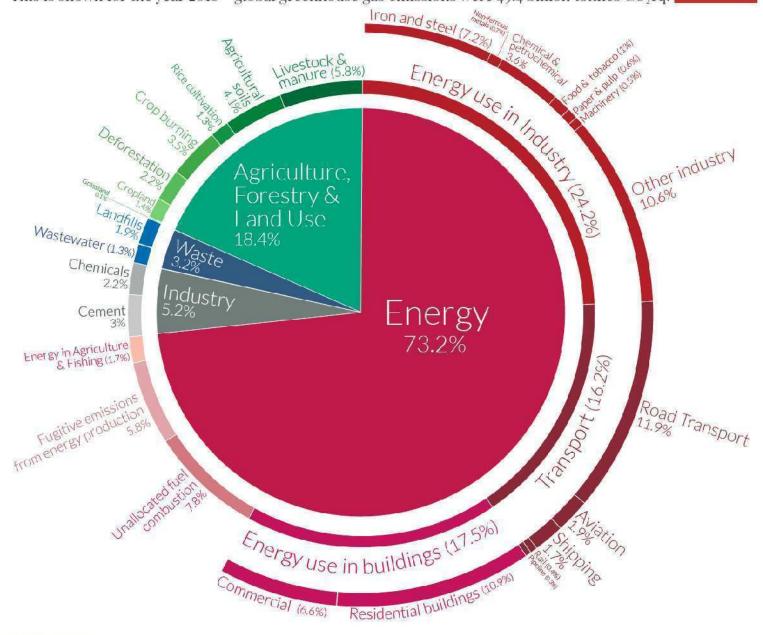
Our World in Data

This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO,eq.

%Energy 73.2Agriculture 18.4

5.2

3.2


Industry

Waste

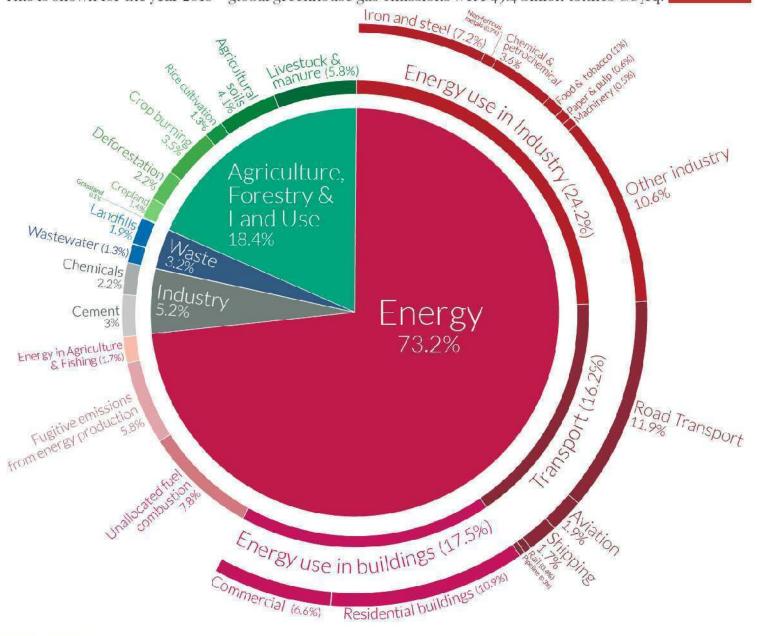
Global greenhouse gas emissions by sector

This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO2eq.

	%
<u>Agriculture</u>	18.4
 Grassland 	0.1
Cropland	1.4
Deforestation	2.2
Crop burning	3.5
 Rice cultivation 	1.3
Agric soils	4.1
Livestock	5.8

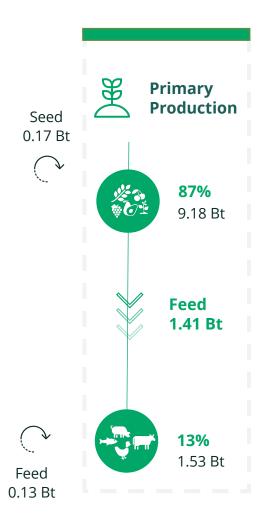
Global greenhouse gas emissions by sector

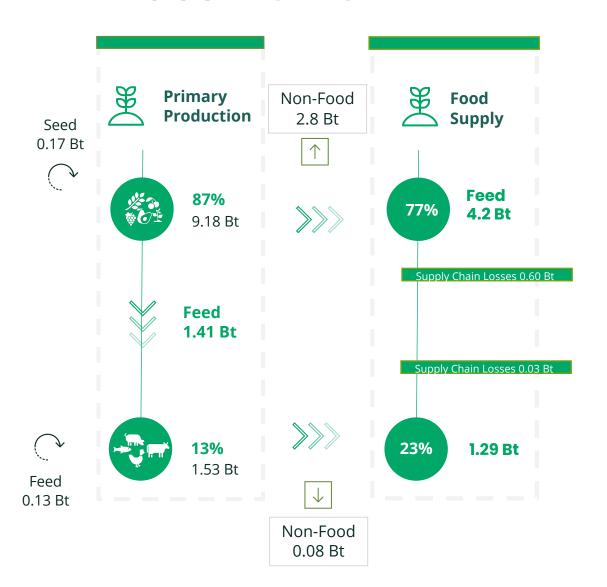
This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO₂eq.

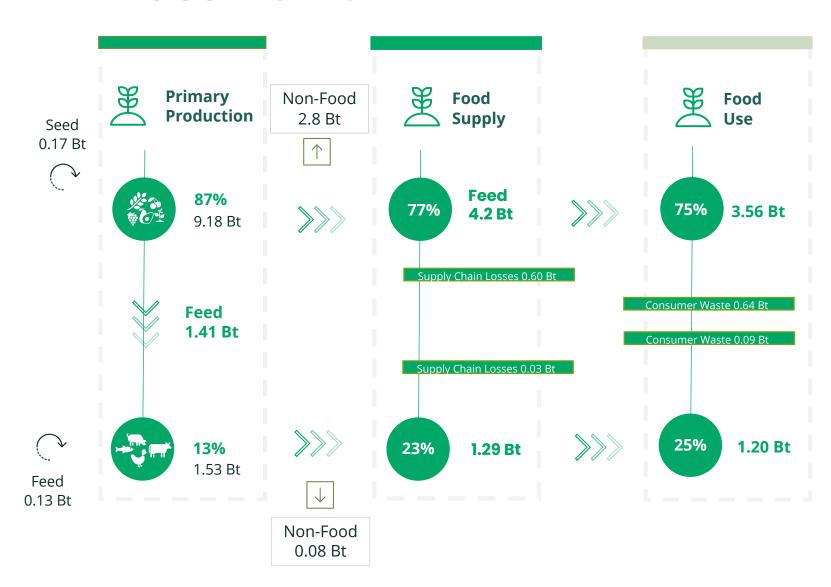

(incl manure)

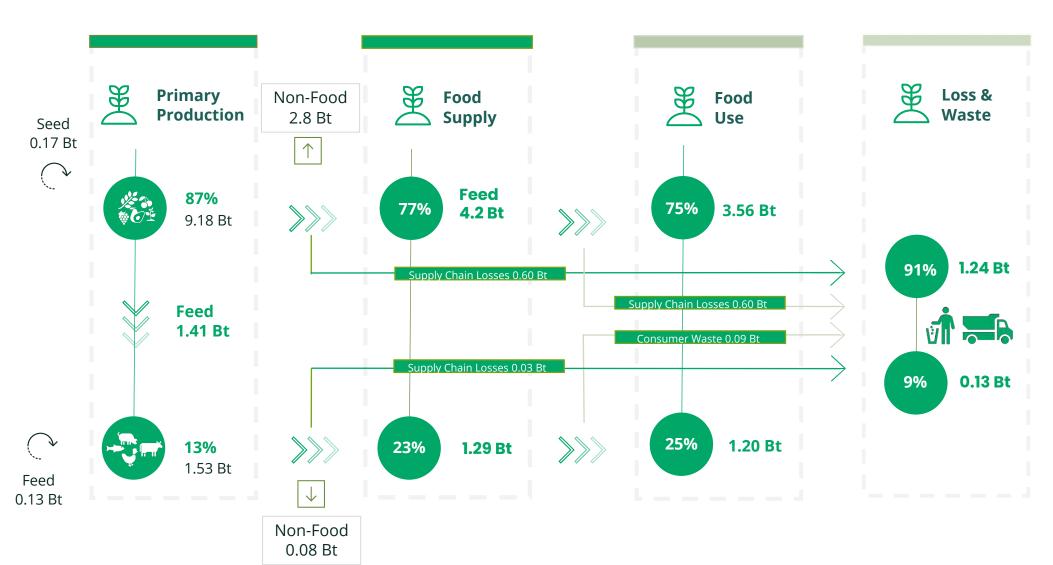
	%			
<u>Agriculture</u>	18.4			
 Grassland 	0.1			
 Cropland 	1.4			
 Deforestation 	2.2			
 Crop burning 	3.5			
 Rice cultivation 	1.3			
Agric soils	4.1			
Livestock	5.8			
(incl manure)				

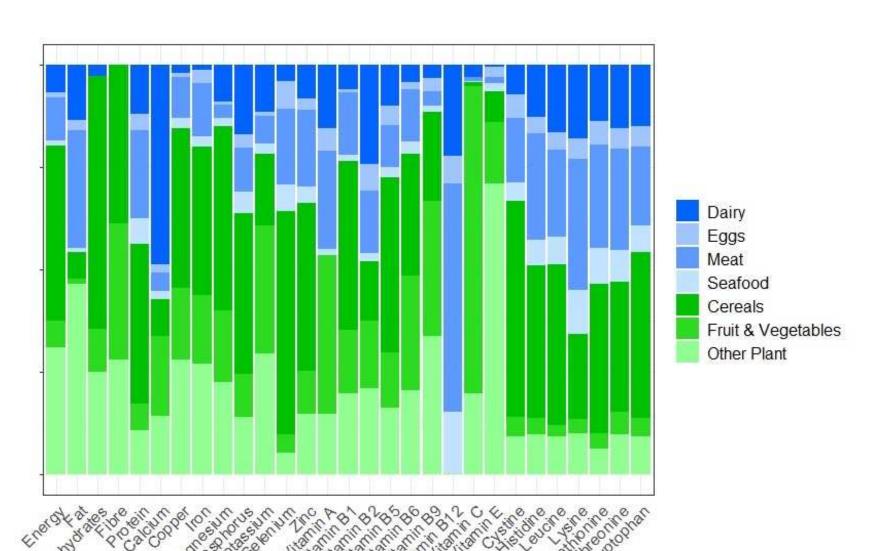
Global greenhouse gas emissions by sector


This is shown for the year 2016 – global greenhouse gas emissions were 49.4 billion tonnes CO₂eq.



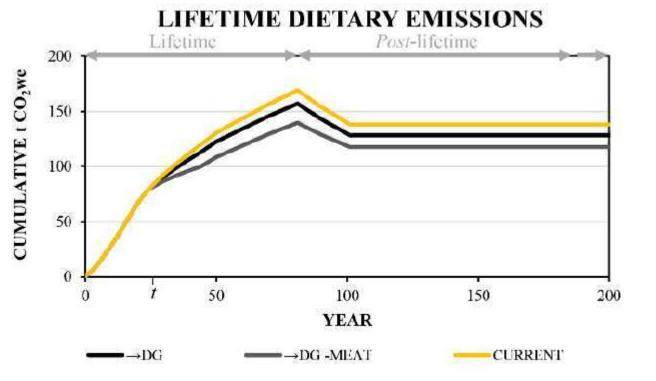






Nutrient sources

Smith et al. 2021 *Animal Production Science*

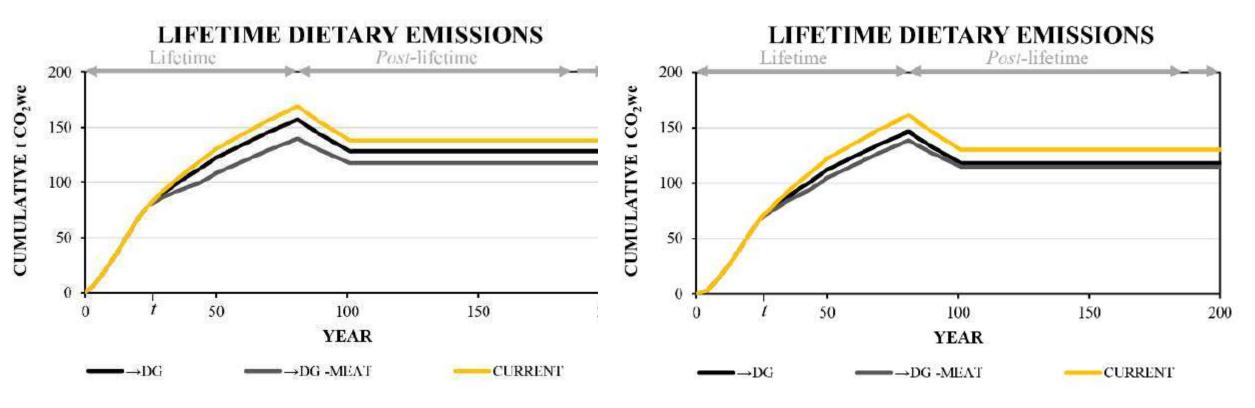


Article

Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective

Jonathan E. Barnsley ¹, Chanjief Chandrakumar ¹, Carlos Gonzalez-Fischer ², Paul E. Eme ¹, Bridget E. P. Bourke ¹, Nick W. Smith ³, Lakshmi A. Dave ³, Warren C. McNabb ³, Harry Clark ², David J. Frame ⁴, John Lynch ⁵ and John R. Roche ^{1,6,*}

On calorie equivalency



Article

Lifetime Climate Impacts of Diet Transitions: A Novel Climate Change Accounting Perspective

Jonathan E. Barnsley ¹, Chanjief Chandrakumar ¹, Carlos Gonzalez-Fischer ², Paul E. Eme ¹, Bridget E. P. Bourke ¹, Nick W. Smith ³, Lakshmi A. Dave ³, Warren C. McNabb ³, Harry Clark ², David J. Frame ⁴, John Lynch ⁵ and John R. Roche ^{1,6,*}

On calorie equivalency

On protein equivalency

What about affordability?

Affordability of nutrition

What's the cheapest way to get a nutrient adequate diet?

In the USA:

- Least cost nutrient adequate diet cost US\$1.98 per day
- Least cost plant-only diet cost US\$3.61 per day

Chungchunlam et al. 2020 Nature Food

Affordability of nutrition

What's the cheapest way to get a nutrient adequate diet?

In the USA:

- Least cost nutrient adequate diet cost US\$1.98 per day
- Least cost plant-only diet cost US\$3.61 per day
- Large increases in the price of animal-sourced foods required before they were priced out:

Chungchunlam et al. 2020 Nature Food

Summary

- The food system is a considerable contributor to global GHGs;
- The global diet is plant-based, but animal fortified;
- Animal-sourced foods are an important natural source of EAAs and micro-nutrients;
- 'Empty-calorie' foods contribute significantly to personal 'warming footprint';
- Changing to vegetarianism in NZ has only a very small effect on atmospheric warming when dietary role of animal-based foods is properly considered;

Contact me:

john.roche@mpi.govt.nz

Follow me:

Down to Earth Advice Ltd

Thought for the Day

@down2earth_john