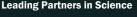


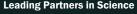
State of Science: Methane

Methane inhibitors for pastoral grazing systems


Ron Ronimus

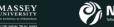
Introducing the team

- AgResearch: Dr Ron Ronimus, Dr Vince Carbone, Dr Linley Schofield, Dr Peter Janssen and Dr Stefan Muetzel
- **University of Auckland**: Dr David Rennison, Dame Dist. Prof Margaret Brimble (plus postgrads)
- DairyNZ: Dr Elena Minnee
- PGgRc/RGP: Mark Aspin
- **Commercialisation team**: Dr Ian Boddy, Dr Jane Calvert and Katherine Kemshall
- **Argenta**: Capsule development: Dr Desmond Morrow



Developing slow-release capsules for pasture-fed animals

- Aiming for 30% inhibition using slow-release capsules lasting >200 days (maximum of ~320 days).
- Slow-release capsules require highly potent and stable inhibitors that can be formulated.
- Any compound suitable for capsule use could also be used as a feed supplement (or other delivery system).
- Capsules allow the tailoring of dosing levels (e.g. slower at start to aid adaptation).
- For capsules lasting 200 days: sheep (7 g payload, 34 mg/day); cattle (52 g, 260 mg/day).
- Data suggests that about two times as much may be needed using capsules to achieve the same 24 hour level of inhibition compared to when a compound is added to twice daily feeds.
- An earlier lead at 30 mg/day in sheep trials (dosed in feed) caused ~30% inhibition. A capsule was tested using sheep (39 mg/day) caused ~7% inhibition using an ad lib pelletised lucerne diet.



Methane inhibitor development pipeline

Discovery

- Methanogen genome analyses
- **Enzyme purification and assays**
- Methanogen pure culture assays
- Rumen fluid in vitro assays (0.2 and 50 ml)
- Enzyme in silico screening
- **Enzyme substrate analogues**

Optimisation

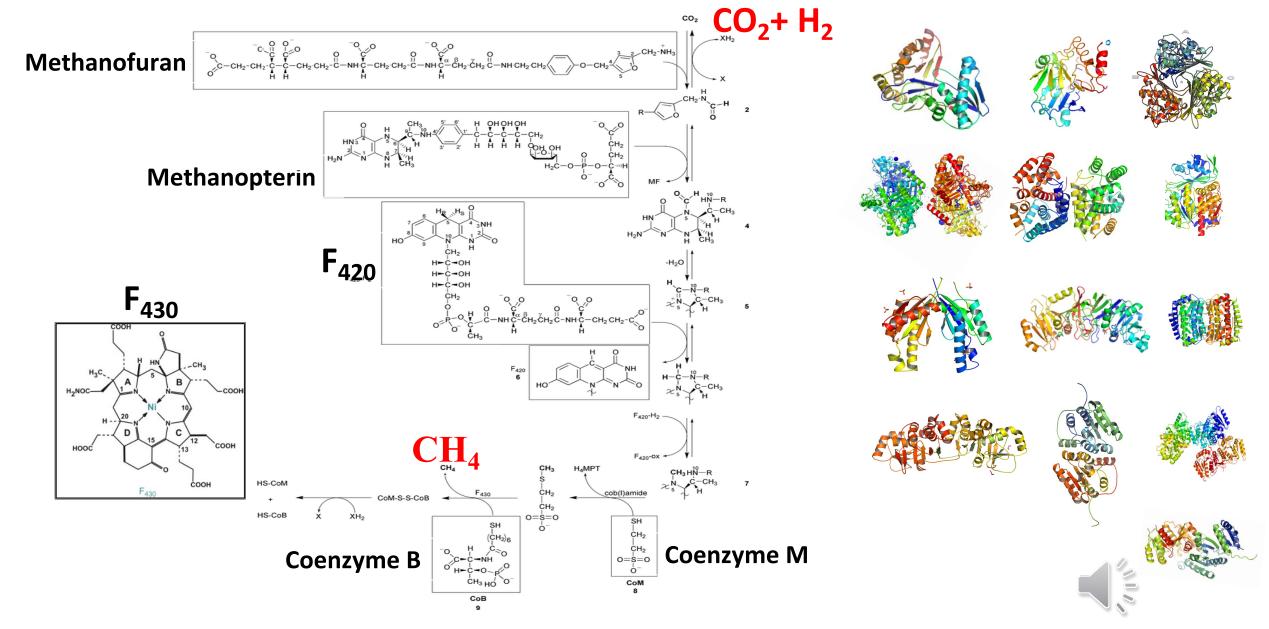
- **Medicinal chemistry**
- **Commercial sources**

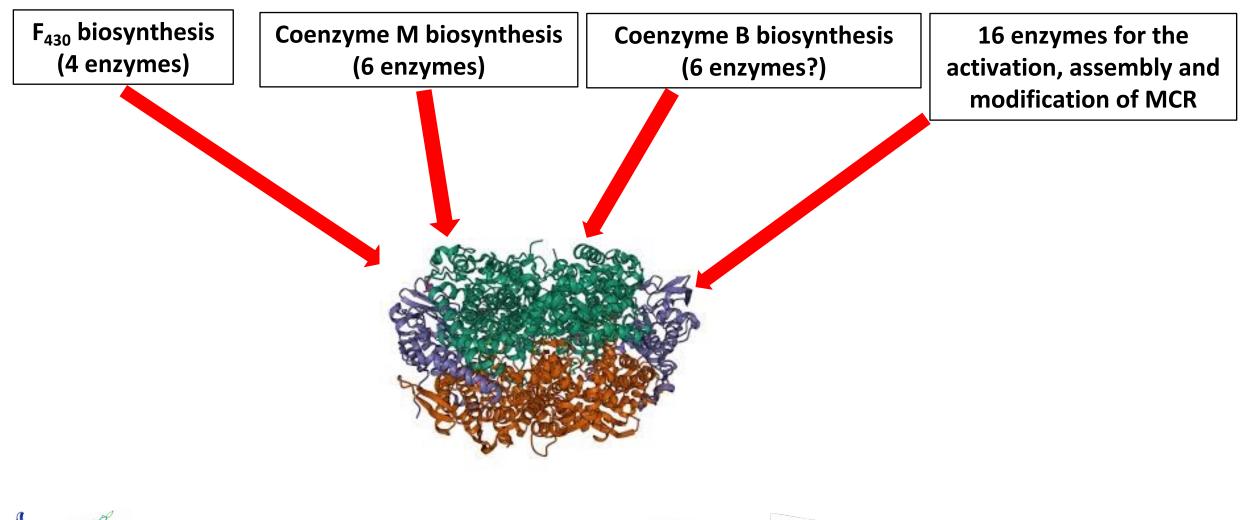
Derivatives

- **Enzyme assays**
- **Culture assays**
- Rumen in vitro assays

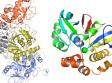
In vivo testing

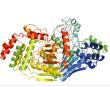
- Mouse toxicity testing
- Short term sheep chamber trial (3 days)
- Mid-term sheep trial (16-28 days)
- **Short term cattle trial (chambers)**
- Mid-term cattle (chambers/GreenFeed)
- Long-term trials (~90 days)
- Delivery method development (grazing)
- **Regulatory approval studies**



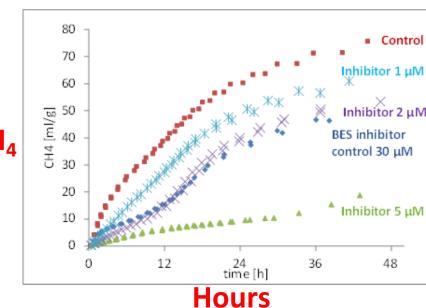


Methanogen cofactor synthesis pathways and methane formation


Targeting enzymes required to obtain fully active methane forming enzyme (MCR)



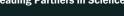



Summary of enzyme, pure culture and rumen in vitro assay screenings

96-well culture assay (4 days)

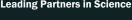
Measure CH₄, H₂ and total gas over 24-48 hours

- >140,000 compounds screened against various enzymes (8 enzymes).
- >40,000 compounds screened against methanogen cultures (= 1.5 \times 10⁷ interactions).
- >15 million compounds screened against enzymes in silico
- ~13,000 compounds (in duplicate) checked in rumen fluid-based assays.
- All strategies have produced hits (>1,000 overall), validating the approaches.



Overall summary of discoveries of the pipeline: current work

- 12 classes of compounds, about half with >100 analogues, and 40+ compounds tested in animals.
- Our current lead class has >140 analogues; more details on next slide.
- Hits from the screening of a 10,000 compound proprietary library are showing strong inhibition in pure culture assays. These could lead to additional new classes.
- Drug discovery requires an ongoing pipeline approach with a steady flow of compounds for testing and discovery of new hits, followed up with medicinal chemistry optimisation.



Current focus: developing a new class of inhibitor

- The first compound in the class was found in one of our screening assays.
- An early derivative has been tested in sheep and led to 11% inhibition.
- Our latest derivatives are up to >30-times more active *in vitro* than the first hit discovered. Some are active at low nanomolar levels in *in vitro* pure culture assays.
- Four examples of these compounds have recently been tested in sheep.
- There is likely to still be some room for further improvement within the class (e.g., medicinal chemistry) to help achieve the target dose for capsule delivery.

Other research ideas for finding and delivering inhibitors

- Expanding work on 'backup' classes from the pipeline.
- Systematic targeting of the six methanogen cofactors using substrate analogues.
- Continued screening of large compound libraries using methanogen pure culture assays.
- Expanding the use of in-house methanogen enzyme crystal structures for identifying new inhibitors by using computer-based screening.
- Evaluating confirmed actives for application through different delivery mechanisms, e.g. feed additives, capsule, water delivery, etc.
- Scaling these studies up to industry impact size.

Acknowledgements

New Zealand Government

Funding:

Pastoral Greenhouse gas Research consortium (PGqRc) Ministry for Primary Industries (MPI), New Zealand

New Zealand Agricultural Greenhouse Gas Research Centre (Harry Clark) New Zealand Government - Livestock Research Group of the Global Research Alliance (GRA) on Agricultural Greenhouse Gases

New Zealand Government - Sustainable Land Management and Climate Change (SLMACC) research programme The Royal Society of New Zealand Marsden

Fund (methanogen cell wall evolution)

Technical support: Carrie Sang Catherine Andrews

Ryzzah Trinidad Kerri Reilly

Debjit Dey Renee Atua

Amy Beattie

Rosemary Heathcott

Kristy Lunn

Chris Hunt

Erin Waller Neville Amyes

Wendy Bain

Brooke Bryson Kevin Knowler

AgResearch:

Dr Tricia Johnson Dr Eric Altermann

Dr David Pacheco Dr Mike Tavendale

Dr Yanli Zhang

Dr Inge Hannus

Dr Kathryn McRae

Stats:

Dr Dongwen Luo Dr Ganesh Siva

Dr Rina Hannaford

Dr Shen Hea Dr Peter Green

International students:

Renee Atua (NZ)

Sinan Al-Attar (Netherlands) **Ruben Engelhart (Netherlands)** Youri van Nuland (Netherlands) Max Wolf (Germany) Denise Schäfer (Germany) **Marion Woermann (Germany) Charlotte Schäfer (Germany) Andreas Schielke (Germany)** Salomé Molano (NZ)

Trials:

Kate Lowe Fiona Mativa

Brenna Dobson-Hill Dr Jane Kay

Peter Reid

Frederik Knol

Natasha Drake Sarah Maclean

Hailey Gillespie

German Molano

Edgar Sandoval

Greg Skelton

Charlotte O'Neil

Sarah Lewis Faye Benjamin

Jack Cartridge

Trevor Holloway

Steve Lees

Alan Hislop Dan Robinson

James Bowden

Gaylene White

Ben Harvie

Chantelle Bull Emilia Richards

Maia Ebbett

Johanna Thuvesson

Adimar Andrade Natalie Butcher

DairyNZ

Dr Barbara Kuhn-**Sherlock**

Mark Bryant

Natasha Leach

Argenta:

Mitch Venning Harshila Mistry

Robyn Lam

Consultants:

Dr Scott McDougall

Plant and Food:

Dr Chrissie Butts

Sheridan Martell Hannah Dinnan

Animal Ethics:

Susan Doohan Dr Gerald Cosgrove

Elyssa Barnaby Jim Webster

Vanessa Borman

Michelle Kirk

Massey University:

Assoc Prof Andrew Sutherland-Smith

Dr Patrick Edwards (NMR)

Dr Gill Norris

University of Auckland:

Sir Prof Bill Denny

Dr Jack Flanagan

Dr Allen Kim

Dr Jason Ko

Dr Ghader Bashiri

Post-graduate chemists

University of Otago:

Dist. Prof Greg Cook

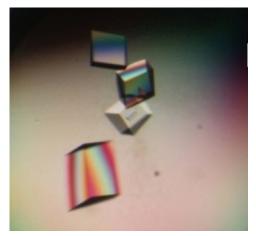
Marion Weimar

James Cheung

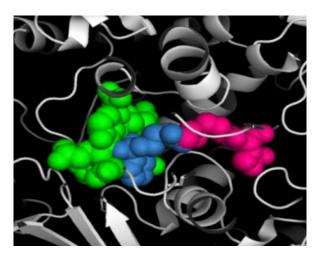
International:

Prof Mark Morrison (Brisbane)

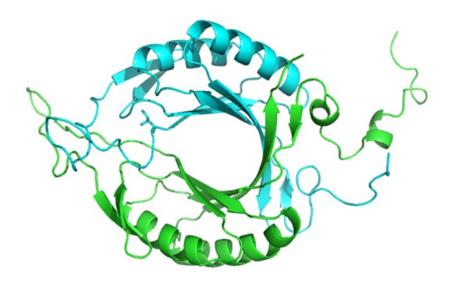
Dr Chris McSweeney (Brisbane)


Prof Yasuo Kobayashi (Hokkaido)

Prof William Whitman (Georgia)


Prof Evert Duir (Alabama)

Prof Steve Manapasabadi (Alabama)


Prof William Martin (Dusseldorf)

Methanogen enzyme crystals

Example of an inhibitor docked into the active site of a methanogen enzyme

Newly solved enzyme structure Involved in methane formation (first discovered 36 years ago)

Thank you for your attention

Leading Partners in Science

