Knowledge

The NZAGRC is committed to providing information regarding agricultural greenhouse gases research and overview information.

Below are a list of publications and reports from a variety of sources that may be useful if you're interested in agricultural greenhouse gases. They range from information for those who have a general interest in greenhouse gas mitigation options and technologies through to very specific science papers on the various gases, technologies and mitigation solutions.

Use the left navigation for more specific subsets of publications and information.

Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: a review

Gardiner, C. A., T. J. Clough, et al. (2016). "Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: a review." New Zealand Journal of Agricultural Research 59(3): 301-317.

ABSTRACT

Nitrous oxide (N2O) emissions from agricultural soils account for more than 10% of New Zealand’s greenhouse gas emissions. Livestock urine deposition drives N2O losses from these soils. It has been speculated that non-urea nitrogen compounds (UNCs) in ruminant urine could reduce or inhibit urine patch N2O emissions. However, we hypothesise that UNCs will have no effect on N2O emissions due to their potentially rapid degradation by plants and soil microbes. Our review suggests that plant secondary metabolites (PSMs) are more likely to perform a role in reducing N2O emissions since many PSMs have known antimicrobial properties. Aucubin, found in Plantago, and isothiocyanates, found in Brassica, have been shown to inhibit a key step in N2O production. Future studies should explore this promising research gap by evaluating forages for potential inhibitory PSMs, assessing whether PSMs are excreted in urine after consumption, and determine whether excretal PSM concentrations are sufficient to reduce N2O emissions.

Read more (external link)


Back to News

Members

Read More