Methane Research Programme

The NZAGRC methane programme is jointly planned and funded in partnership with the PGgRc and aligns with existing MPI programmes funded through SLMACC and New Zealand funding in support of the Global Research Alliance on agricultural greenhouse gases. It aims to reduce emissions by directly targeting the methane producing methanogens through the discovery of small molecule inhibitors and vaccines and indirectly through feeding and changes in animal phenotype. 


  • Breeding: Research to understand the genetics of host control of ruminant methane emissions, which aims to develop genetic and genomic selection technologies to reduce methane yield and intensity in sheep. The current stage of the programme involves the development and dissemination of practical tools for selection for lowered emissions. A major part of maximising impact and uptake is to explore relative economic value from increased production and potential increased feed utilisation associated with lowered methane
  • Vaccine (jointly supported by PGgRc): A prototype vaccine (which after further development is aimed at producing a vaccine targeted at reducing methane emissions in cattle and sheep by 20%) is being formulated with the help of a commercial partner
  • Inhibitors (previously jointly funded but now fully funded by PGgRc): Research to develop cost-effective inhibitors that reduce methane emissions by at least 20% in sheep and cattle—without reducing productivity—is now being developed, with a view to bring the technology to market
  • Modelling: A tool to help scientists in the NZAGRC/PGgRc programme to develop hypotheses and predict responses in methane formation is in its final stages
Current progress and research stories

The current objectives within the NZAGRC methane programme have made significant progress this year, with the sheep breeding programme getting closer to delivering breeding values to the national flock.

Decreasing methane emissions by feeding grazing ruminants: a fit with productive and financial realities?

Pacheco, D., G. Waghorn, et al. (2014). "Decreasing methane emissions from ruminants grazing forages: a fit with productive and financial realities?" Animal Production Science 54(9): 1141-1154.

Ruminants contribute to human food supply and also anthropogenic greenhouse gas (GHG) emissions. An understanding of production systems and information on animal populations has enabled global inventories of ruminant GHG emissions (methane and nitrous oxide), and dietary strategies are being developed to reduce GHG emissions from ruminants. Mitigation strategies need to consider the management/feeding systems used to ensure that these strategies will be readily accepted and adopted by farmers. Housed systems allow diets to be formulated in ways that may reduce GHG production, but the challenge is much greater for systems where animals graze outdoors for long periods. A methane mitigation option in the form of fresh forage would be desirable in livestock production systems with high reliance on grazing. A brief summary of New Zealand research, carried out on fresh grasses, legumes, herbs and crops, suggest that we have an incomplete understanding of the feed characteristics that define a ‘high’ or a ‘low’ methane feed. The variation in methane emissions measured between feeds, individual animals and experiment is large, even in controlled conditions, and the dynamic nature of sward-animal interactions will only exacerbate this variation, creating challenges beyond the identification of mitigants. Furthermore, implementation of knowledge gained from controlled studies requires validation under grazing systems to identify any trade-offs between methane reduction and animal productivity or emission of other pollutants. Therefore, investment and research should be targeted at mitigation options that can and will be adopted on-farm, and the characteristics of temperate grasslands farming suggest that these options may differ from those for intensive (high input/output) or extensive (low input/output) systems.

Back to News