Methane Research Programme

The NZAGRC methane programme is jointly planned and funded in partnership with the PGgRc and aligns with existing MPI programmes funded through SLMACC and New Zealand funding in support of the Global Research Alliance on agricultural greenhouse gases. It aims to reduce emissions by directly targeting the methane producing methanogens through the discovery of small molecule inhibitors and vaccines and indirectly through feeding and changes in animal phenotype. 


  • Breeding: Research to understand the genetics of host control of ruminant methane emissions, which aims to develop genetic and genomic selection technologies to reduce methane yield and intensity in sheep. The current stage of the programme involves the development and dissemination of practical tools for selection for lowered emissions. A major part of maximising impact and uptake is to explore relative economic value from increased production and potential increased feed utilisation associated with lowered methane
  • Vaccine (jointly supported by PGgRc): A prototype vaccine (which after further development is aimed at producing a vaccine targeted at reducing methane emissions in cattle and sheep by 20%) is being formulated with the help of a commercial partner
  • Inhibitors (previously jointly funded but now fully funded by PGgRc): Research to develop cost-effective inhibitors that reduce methane emissions by at least 20% in sheep and cattle—without reducing productivity—is now being developed, with a view to bring the technology to market
  • Modelling: A tool to help scientists in the NZAGRC/PGgRc programme to develop hypotheses and predict responses in methane formation is in its final stages
Current progress and research stories

The current objectives within the NZAGRC methane programme have made significant progress this year, with the sheep breeding programme getting closer to delivering breeding values to the national flock.

Uncertainties of global warming metrics: CO2 and CH4

Reisinger, A.M. MeinshausenM. Manning, and G. Bodeker (2010), Uncertainties of global warming metrics: CO2 and CH4Geophys. Res. Lett.37, L14707, doi:10.1029/2010GL043803.

We present a comprehensive evaluation of uncertainties in the Global Warming Potential (GWP) and Global Temperature Change Potential (GTP) of CH4, using a simple climate model calibrated to AOGCMs and coupled climate-carbon cycle models assessed in the IPCC Fourth Assessment Report (AR4). In addition, we estimate uncertainties in these metrics probabilistically by using a method that does not rely on AOGCMs but instead builds on historical constraints and uncertainty estimates of current radiative forcings. While our mean and median GWPs and GTPs estimates are consistent with previous studies, our analysis suggests that uncertainty ranges for GWPs are almost twice as large as estimated in the AR4. Relative uncertainties for GTPs are larger than for GWPs, nearly twice as high for a time horizon of 100 years. Given this uncertainty, our results imply the possibility for substantial future adjustments in best-estimate values of GWPs and in particular GTPs.

Read more (external website)

Back to News