Methane Research Programme

The NZAGRC methane programme is jointly planned and funded in partnership with the PGgRc and aligns with existing MPI programmes funded through SLMACC and New Zealand funding in support of the Global Research Alliance on agricultural greenhouse gases. It aims to reduce emissions by directly targeting the methane producing methanogens through the discovery of small molecule inhibitors and vaccines and indirectly through feeding and changes in animal phenotype. 


  • Breeding: Research to understand the genetics of host control of ruminant methane emissions, which aims to develop genetic and genomic selection technologies to reduce methane yield and intensity in sheep. The current stage of the programme involves the development and dissemination of practical tools for selection for lowered emissions. A major part of maximising impact and uptake is to explore relative economic value from increased production and potential increased feed utilisation associated with lowered methane
  • Vaccine (jointly supported by PGgRc): A prototype vaccine (which after further development is aimed at producing a vaccine targeted at reducing methane emissions in cattle and sheep by 20%) is being formulated with the help of a commercial partner
  • Inhibitors (previously jointly funded but now fully funded by PGgRc): Research to develop cost-effective inhibitors that reduce methane emissions by at least 20% in sheep and cattle—without reducing productivity—is now being developed, with a view to bring the technology to market
  • Modelling: A tool to help scientists in the NZAGRC/PGgRc programme to develop hypotheses and predict responses in methane formation is in its final stages
Current progress and research stories

The current objectives within the NZAGRC methane programme have made significant progress this year, with the sheep breeding programme getting closer to delivering breeding values to the national flock.

A modified version of the Molly rumen model to quantify methane emissions from sheep

Vetharaniam, I., R. E. Vibart, et al. (2015). "A modified version of the Molly rumen model to quantify methane emissions from sheep1." Journal of Animal Science 93(7): 3551-3563.

We modified the rumen submodel of the Molly dairy cow model to simulate the rumen of a sheep and predict its methane emissions. We introduced a rumen hydrogen (H2) pool as a dynamic variable, which (together with the microbial pool in Molly) was used to predict methane production, to facilitate future consideration of thermodynamic control of methanogenesis. The new model corrected a misspecification of the equation of microbial H2 utilization in Molly95, which could potentially give rise to unrealistic predictions under conditions of low intake rates. The new model included a function to correct biases in the estimation of net H2 production based on the default stoichiometric relationships in Molly95, with this function specified in terms of level of intake. Model parameters for H2 and methane production were fitted to experimental data that included fresh temperate forages offered to sheep at a wide range of intake levels and then tested against independent data. The new model provided reasonable estimates relative to the calibration data set, but a different parameterization was needed to improve its predicted ability relative to the validation data set. Our results indicate that, although feedback inhibition on H2 production and methanogen activity increased with feeding level, other feedback effects that vary with diet composition need to be considered in future work on modeling rumen digestion in Molly.


Read more (external website)

Back to News