Science

NZAGRC Science Leadership Team

The role of NZAGRC Science Leadership Team (SLT) is to play a key part in the development, implementation and monitoring of all of the Centre’s science programmes and strategies.  It consists of respected New Zealand-based researchers with excellent science credentials accompanied by strong leadership, communication, strategic and inter-personal skills with expertise in those areas of science covered in the NZAGRC Strategy and Science Plan.

Membership is agreed by the Steering Group and includes the NZAGRC Principal Investigators in addition to the NZAGRC Director and NZAGRC Operations Manager.  

Dr Graeme Attwood  AgResearch  
Dr Cecile DeKlein   AgResearch 
Professor Hong Di  Lincoln University 
Dr Robyn Dynes  AgResearch  
Dr Peter Janssen  AgResearch  
Dr David Whitehead   Manaaki Whenua

 

Science leadership & capability building 

The NZAGRC is committed to providing opportunities for researchers to be trained and work with leading experts in New Zealand.  Some students go on to continue their studies or enter a postdoctoral position under guidance from NZAGRC science leaders, other enter into industry based positions.

The NZAGRC supports more than 50 researchers and students by providing funding via its core research programme or via its student scholarships programme.

Below are profiles of our scientists and past students. 

Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: a review

Gardiner, C. A., T. J. Clough, et al. (2016). "Potential for forage diet manipulation in New Zealand pasture ecosystems to mitigate ruminant urine derived N2O emissions: a review." New Zealand Journal of Agricultural Research 59(3): 301-317.

ABSTRACT

Nitrous oxide (N2O) emissions from agricultural soils account for more than 10% of New Zealand’s greenhouse gas emissions. Livestock urine deposition drives N2O losses from these soils. It has been speculated that non-urea nitrogen compounds (UNCs) in ruminant urine could reduce or inhibit urine patch N2O emissions. However, we hypothesise that UNCs will have no effect on N2O emissions due to their potentially rapid degradation by plants and soil microbes. Our review suggests that plant secondary metabolites (PSMs) are more likely to perform a role in reducing N2O emissions since many PSMs have known antimicrobial properties. Aucubin, found in Plantago, and isothiocyanates, found in Brassica, have been shown to inhibit a key step in N2O production. Future studies should explore this promising research gap by evaluating forages for potential inhibitory PSMs, assessing whether PSMs are excreted in urine after consumption, and determine whether excretal PSM concentrations are sufficient to reduce N2O emissions.

Read more (external link)


Back to News

Members