Science

NZAGRC Science Leadership Team

The role of NZAGRC Science Leadership Team (SLT) is to play a key part in the development, implementation and monitoring of all of the Centre’s science programmes and strategies.  It consists of respected New Zealand-based researchers with excellent science credentials accompanied by strong leadership, communication, strategic and inter-personal skills with expertise in those areas of science covered in the NZAGRC Strategy and Science Plan.

Membership is agreed by the Steering Group and includes the NZAGRC Principal Investigators in addition to the NZAGRC Director and NZAGRC Operations Manager.  

Dr Graeme Attwood  AgResearch  
Dr Cecile DeKlein   AgResearch 
Professor Hong Di  Lincoln University 
Dr Robyn Dynes  AgResearch  
Dr Peter Janssen  AgResearch  
Dr David Whitehead   Manaaki Whenua

 

Science leadership & capability building 

The NZAGRC is committed to providing opportunities for researchers to be trained and work with leading experts in New Zealand.  Some students go on to continue their studies or enter a postdoctoral position under guidance from NZAGRC science leaders, other enter into industry based positions.

The NZAGRC supports more than 50 researchers and students by providing funding via its core research programme or via its student scholarships programme.

Below are profiles of our scientists and past students. 

Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil?

S.F. Balvert, J. Luo, L.A. Schipper, Do glucosinolate hydrolysis products reduce nitrous oxide emissions from urine affected soil?, Science of The Total Environment, Volume 603, 2017, Pages 370-380, ISSN 0048-9697, http://dx.doi.org/10.1016/j.scitotenv.2017.06.089.

Highlights

 

  • The effectiveness of glucosinolate hydrolysis products at inhibiting N2O emissions in a high N environment was tested.
  • Laboratory and field trials measuring N2O production and soil mineral N cycling were conducted.
  • Some glucosinolate hydrolysis products reduced nitrification rates.
  • Where inhibition occurred it was short lived.
  • Glucosinolate hydrolysis products with different R groups did not inhibit soil nitrogen processes to the same degree.

Read more (external link)

 


Back to News

Members