Science

NZAGRC Science Leadership Team

The role of NZAGRC Science Leadership Team (SLT) is to play a key part in the development, implementation and monitoring of all of the Centre’s science programmes and strategies.  It consists of respected New Zealand-based researchers with excellent science credentials accompanied by strong leadership, communication, strategic and inter-personal skills with expertise in those areas of science covered in the NZAGRC Strategy and Science Plan.

Membership is agreed by the Steering Group and includes the NZAGRC Principal Investigators in addition to the NZAGRC Director and NZAGRC Operations Manager.  

Dr Graeme Attwood  AgResearch  
Dr Cecile DeKlein   AgResearch 
Professor Hong Di  Lincoln University 
Dr Robyn Dynes  AgResearch  
Dr Peter Janssen  AgResearch  
Dr David Whitehead   Manaaki Whenua

 

Science leadership & capability building 

The NZAGRC is committed to providing opportunities for researchers to be trained and work with leading experts in New Zealand.  Some students go on to continue their studies or enter a postdoctoral position under guidance from NZAGRC science leaders, other enter into industry based positions.

The NZAGRC supports more than 50 researchers and students by providing funding via its core research programme or via its student scholarships programme.

Below are profiles of our scientists and past students. 

Anne Wecking

The opportunity to work with the Quantum Cascade Laser (QCL) made it an easy decision for German PhD student Anne Wecking to move to the other side of the world.

“It’s a privilege to work with a piece of technology like this—the way it functions is pretty fancy and its implication on future greenhouse gas inventories might mean we can reconsider our current ways of budgeting the emissions of nitrous oxide.”

Anne’s PhD is about the quantification and mitigation of nitrous oxide emissions from grazed pastures, and is supervised by Professor Schipper.

“The QCL provides us with continuous and precise data about the amount of nitrous oxide present in the surface near atmosphere. In combination with wind data, we can integrate emissions over hectares,” she says. “This is a great technological advance forward, and is helping us to further understand what’s happening on the farm scale.”

Read more about the QCL

 


Back to News

Members