Soil Carbon

Increasing the quantity of carbon stored in agricultural soils has the potential to offset emissions of greenhouse gases to the atmosphere, while soil carbon losses would further add to those emissions.

However, realising this mitigation potential is technically challenging when soil carbon stocks are already high (as they are in New Zealand), potential changes in soil carbon are small and spatial variability is high.

The current NZAGRC programme has three distinct components:

(1) testing specific management practices that may increase the long term soil carbon store in field situations;

(2) developing and using models to predict how a range of management practices may influence long and short tem soil carbon storage; and

(3) identifying those factors that influence the stability of current or newly added soil carbon.

We have also supported international work to map on farm soil carbon and will participate in the international research programme CIRCASA.

Principal Investigators

Dr David Whitehead, Manaaki Whenua - Landcare Research (2010-present)
Professor Frank Kelliher, AgResearch (2010-2017)

Research Stories

Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study

Whitehead, D., Schipper, L.A., Pronger, J., Gabriel, Y.K. Moinet, Mudge, P.L., Pereira, R.C., Kirschbaum, M.U.F., McNally, S.R., Beare, M.H., Camps-Arbestain, M. 2018. Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study, Agriculture, Ecosystems & Environment, 265 432-443,


Even small increases in the large pool of soil organic carbon could result in large reductions in atmospheric CO2 concentrations sufficient to limit global warming below the threshold of 2 °C required for climate stability. Globally, grasslands occupy 70% of the world’s agricultural area, so interventions to farm management practices to reduce losses or increase soil carbon stocks in grassland are highly relevant. Here, we review the literature with particular emphasis on New Zealand and report on the effects of management practices on changes in soil carbon stocks for temperate grazed grasslands. We include findings from models that explore the trade-offs between multiple desirable outcomes, such as increasing soil carbon stocks and milk production.

Farm management practices can affect soil carbon stocks through changes in net primary production, the proportions of biomass removed, the degree of stabilisation of carbon in the soil and changes to the rate of soil carbon decomposition. The carbon saturation deficit defines the potential for a soil to stabilise additional carbon. Earlier reviews have concluded that, while labile carbon is the dominant substrate for soil carbon decomposition, a fraction of soil carbon stocks is stabilised and protected from decomposition by the formation of organo-mineral complexes. Recent evidence shows that the rate of organic carbon decomposition is determined primarily by the extent of soil organic carbon protection and, therefore, the availability of substrates to microbial activity.

New Zealand grassland systems have moderate to high soil carbon stocks in the surface layers (i.e., upper 0.15 m) where most roots are located, so the carbon saturation deficit is relatively low and the scope to increase soil carbon stocks by carbon inputs from primary production may be limited. International studies have shown that the addition of fertilisers, feed imports, and applications of manure and effluent can increase soil carbon stocks, especially for degraded soils, but the responses in New Zealand soils are uncertain because of the limited number of studies. However, recent evidence shows that irrigation can reduce soil carbon stocks in New Zealand, but neither the processes nor the long-term trends are known. Studies of sward renewal have shown that short-term losses of carbon losses resulting from the disturbance can be mitigated using rapid replacement of the new sward, minimum tillage and avoidance of times when the soil water content is high. Swards comprising multiple species have also shown that soil carbon stocks may be increased after periods of several years. Model simulations have shown that the goal of increasing both soil carbon and milk production could be achieved best by increasing carbon inputs from supplementary animal feed. However, losses of carbon at feed export sites need to be minimised to achieve overall net gains in soil carbon. Grazing intensity can have a big influence on soil carbon stocks but the magnitude and direction of the effects are not consistent between studies.

Biochar addition could possibly increase soil carbon stocks but it is not yet an economical option for large-scale application in New Zealand. There is some evidence that the introduction of earthworms and dung beetles could potentially increase soil carbon stabilisation, but the greenhouse gas benefits are confounded by possible increases in nitrous oxide emissions. The new practice of full inversion tillage during grassland renewal has the potential to increase soil carbon stocks under suitable conditions but full life-cycle analysis including the effects of the disruptive operations has yet to be completed.

We conclude with a list of criteria that determine the success and suitability of management options to increase soil carbon stocks and identify priority research questions that need to be addressed using experimental and modelling approaches to optimise management options to increase soil carbon stocks.

Read more (external link)


Back to News