Soil Carbon

Increasing the quantity of carbon stored in agricultural soils has the potential to offset emissions of greenhouse gases to the atmosphere, while soil carbon losses would further add to those emissions.

However, realising this mitigation potential is technically challenging when soil carbon stocks are already high (as they are in New Zealand), potential changes in soil carbon are small and spatial variability is high.

The current NZAGRC programme has three distinct components:

(1) testing specific management practices that may increase the long term soil carbon store in field situations;

(2) developing and using models to predict how a range of management practices may influence long and short tem soil carbon storage; and

(3) identifying those factors that influence the stability of current or newly added soil carbon.

We have also supported international work to map on farm soil carbon and will participate in the international research programme CIRCASA.

Principal Investigators

Dr David Whitehead, Manaaki Whenua - Landcare Research (2010-present)
Professor Frank Kelliher, AgResearch (2010-2017)

Research Stories

Assessing the vulnerability of organic matter to C mineralisation in pasture and cropping soils of New Zealand

McNally, S., Beare, M., Curtin, D., Tregurtha, C., Qiu, W., Kelliher, F., & Baldock, J. (2018). Assessing the vulnerability of organic matter to C mineralisation in pasture and cropping soils of New Zealand. Soil Research, 56(5), 481-490.



In New Zealand, pastoral soils have substantial organic carbon (OC) stocks, which may be vulnerable to loss from disturbance and environmental perturbations. We assessed OC vulnerability using two approaches. For the first approach, we postulated that the OC deficit of continuously cropped soils relative to nearby pastoral soils would provide a measure of the quantity of potentially vulnerable OC in pastures. As a test, soils were sampled to a depth of 15 cm at 149 sites and the total organic carbon (TOC) and particulate organic carbon (POC) contents were measured. The second approach involved measurement of OC mineralisation in a laboratory assay (98 day aerobic incubation at 25°C). For the pastoral soils, the mean TOC and POC was about twice that of the cropped soils. On average, 89% more OC was mineralised from the pastoral soils compared with the cropped counterparts. However, the quantity of OC mineralised in pasture soils was small relative to the potential for OC loss inferred from the difference in TOC between pastoral and cropped soils. Carbon mineralisation was explained using a two-pool exponential model with rate constants of the ‘fast’ and ‘slow’ pools equating to 0.36 ± 0.155 and 0.007 ± 0.003 day–1 respectively. The larger, slow OC pool correlated strongly with hot water extractable OC whereas the fast pool was related to OC extracted using cold water. Our results suggest that water extraction (using cold and hot water) can provide a rapid estimate of the quantity of mineralisable OC across a wide range of New Zealand soils.

Read more (external link)

Back to News